Definitions and key facts for section 1.9

The $n \times n$ identity matrix I_{n} is the $n \times n$ square matrix with 1 in every diagonal entry and 0 s elsewhere.

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad I_{5}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

We let $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ denote the columns of I_{n}.

$$
e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { in } \mathbb{R}^{2} \quad e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { in } \mathbb{R}^{3} \quad e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right] \text { in } \mathbb{R}^{5}
$$

The standard matrix for the linear transformation $T: R^{n} \rightarrow R^{m}$ is the $m \times n$ matrix

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right]
$$

Fact: If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation and A is its standard matrix, then A is unique and

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for all } \mathbf{x} \text { in } \mathbb{R}^{n}
$$

A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be onto \mathbb{R}^{m} if each \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}. A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be one-to-one \mathbb{R}^{m} if each \mathbf{b} in \mathbb{R}^{m} is the image of at most one \mathbf{x} in \mathbb{R}^{n}.

Fact: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation with standard matrix A, then

1. T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if and only if the columns of $A \operatorname{span} \mathbb{R}^{m}$.
2. T is one-to-one if and only if the columns of A are linearly independent.
