Definitions and key facts for section 1.9

The $n \times n$ identity matrix I_n is the $n \times n$ square matrix with 1 in every diagonal entry and 0s elsewhere.

$$I_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad I_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad I_{5} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

We let $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ denote the columns of I_n .

$$e_2 = \begin{bmatrix} 0\\1 \end{bmatrix} \text{ in } \mathbb{R}^2 \quad e_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \text{ in } \mathbb{R}^3 \quad e_3 = \begin{bmatrix} 0\\0\\1\\0\\0 \end{bmatrix} \text{ in } \mathbb{R}^5$$

The standard matrix for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is the $m \times n$ matrix

$$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix}$$

Fact: If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and A is its standard matrix, then A is unique and

 $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n .

A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at *least* one **x** in \mathbb{R}^n .

A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at *most* one **x** in \mathbb{R}^n .

Fact: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix A, then

- 1. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m .
- 2. T is one-to-one if and only if the columns of A are linearly independent.